

This project has received funding from the European Union’s
Horizon Europe research and innovation programme under
grant agreement No 101099093

D5.3

Communication Protocol

Partner: DAVE

Lead Author: Scarpa (DAVE)

Version: F: final;
D: draft; RD:
revised draft

F

Date: 22/11/2024

Project No 101099093 – Prometeus – WP5 – D5.3

1

History of Changes

Revision Date

(dd/mm/yyyy)

Author Changes Status (Draft/In review/Submitted)

V 1 28/10/2024 Alberto Scarpa (DAVE) First draft Draft

V 1.1 04/11/2024 Alberto Scarpa,

Manuele Papais (DAVE)

General

improvements

Submitted to partners

V 1.2 15/11/2024 Alberto Scarpa,

Manuele Papais (DAVE)

Formatting

and UI updates

Submitted to partners

V 1.3 21/11/2024 Alberto Scarpa (DAVE) Formatting Submitted to partners

V 2 22/11/2024 Alberto Scarpa (DAVE),

Sabrina Brigadoi, Marta

Pozza (UniPD)

 Final version

Grant Agreement 101099093

Acronym Prometeus

Project full title Preterm Brain-Oxygenation and Metabolic EU-Sensing: Feed the
Brain

Deliverable D5.3

Deliverable Name Communication Protocol

Nature of deliverable R: Document, Report

Dissemination level SEN (Sensitive — limited under the conditions of the Grant
Agreement)

Scheduled delivery date 30/11/2024

Actual delivery date 22/11/2024

Prepared by Alberto Scarpa (DAVE)

Reviewed by Manuele Papais (DAVE)

Verified by Sabrina Brigadoi (UniPD)

Project No 101099093 – Prometeus – WP5 – D5.3

2

Table of contents

History of Changes ... 1

1 Executive Summary .. 3

2 List of abbreviations ... 3

3 Architecture ... 4

3.1 High level architecture ... 4

3.2 Components .. 4

3.2.1 Neo-opticap sensor... 4

3.2.2 CMM sensor ... 5

3.2.3 PEU (Prometeus Edge Unit) ... 5

3.2.4 PCS (Prometeus Cloud Service) ... 5

3.2.5 Metabolic Model and NCA (Nutritional Clinical Advisor) ... 5

3.2.6 Local App for HCP ... 5

3.2.7 Webapp for HCP ... 5

3.2.8 WebApp for Parents ... 5

4 Demo ... 6

5 Protocols .. 6

6 Neo-opticap <-> PEU Protocol ... 6

6.1 Communication Protocol ... 6

6.2 Base URL .. 6

6.3 REST Endpoint ... 6

6.3.1 Post sensor data .. 6

6.3.2 Get Sensor Configuration ... 8

6.3.3 Post File with bulk raw data .. 8

6.4 Web socket .. 9

6.5 Error Responses .. 11

6.6 Security ... 12

7 CMM <-> PEU Protocol .. 12

7.1 Physical layer ... 12

7.2 BLE communication structure .. 12

7.2.1 Services and Characteristics .. 13

7.2.2 Example Messages .. 14

7.3 Error Handling ... 14

8 NCA <-> PEU Protocol ... 14

8.1 Web Socket.. 15

9 PEU <-> PCS Protocol .. 17

10 USB Protocol ... 17

11 Development Plan .. 18

Project No 101099093 – Prometeus – WP5 – D5.3

3

1 Executive Summary

This document is the deliverable D5.3 “Communication Protocol” of the Prometeus Project.

The aim is to present the description of the specification and implementation of the
communication protocols between the cloud-based app and the other component of the
Prometeus project within the activities of Task 5.1 and Task 5.2 of WP5.

The contents of this document are:

I. High level HW and SW architecture of the Prometeus cloud app

II. Protocol specification

2 List of abbreviations

BR Business Requirement

UR User Requirement

SR System Requirement

HCP Health Care Professional

CMM Continuous Metabolic Monitoring

NICU Neonatal Intensive Care Unit

NCA Nutritional Clinical Advisor

PEU Prometeus Edge Unit

PCS Prometeus Cloud Service

Project No 101099093 – Prometeus – WP5 – D5.3

4

3 Architecture

3.1 High level architecture

The high-level architecture proposed in D5.1 was confirmed. The monitoring neo-opticap and
CMM devices are connected via Ethernet/REST API and via Bluetooth with the PEU. The PEU
integrates the connection with the display and is connected to the PCS via WiFi, Eth or 4G. The
App for Parents is connected with the PCS.

On the software side, the PEU and PCS are connected using ToloMEO IoT libraries provided by
DAVE Embedded Systems. On the PEU there are two software bridges for the connection with
the Prometeus devices.

3.2 Components

3.2.1 Neo-opticap sensor

The neo-opticap is a cap for the baby. The cap measures 6 parameters per each of the 6 brain
regions:

Project No 101099093 – Prometeus – WP5 – D5.3

5

• FR: frontal right,

• FL: frontal left

• BR: back right

• BL: back left

• R: right

• L: left

Raw signal from the cap is elaborated with a custom electronic system that sends elaborated data
to the PEU. It communicates via REST API over the network with the PEU. The sensor samples the
6x6 measurements at least every minute and after processing sends them to the PEU every 5 mins.

3.2.2 CMM sensor

The CMM is a patch sensor worn by the baby. It measures 3 analytes: glucose, lactate, beta
hydroxybutyrate. The sensor communicates via Bluetooth with the PEU. The sensor generates a
sample every 5 mins.

3.2.3 PEU (Prometeus Edge Unit)

PEU (Prometeus Edge Unit): field device which is in proximity to the sensing devices and the
patients and interoperates with the sensors through their docking stations, manages the
Controller execution, and interoperates with field equipment and other ICT platforms.

3.2.4 PCS (Prometeus Cloud Service)

PCS (Prometeus Cloud Service) is the cloud platform of the Prometeus system. It provides
functionalities like user management, data storage, frontend for HCP, and frontend for parents.

3.2.5 Metabolic Model and NCA (Nutritional Clinical Advisor)

The Metabolic Model is a software component that receives the data from sensors and the
information about the baby as input. Internally the model creates the digital avatar of the
metabolism of the baby. The model is used to simulate the effect of active actions (like nutrition)
on the baby.

NCA is the algorithm responsible to find the best nutrition for the baby based on the current
health status and using the metabolic model of the baby to forecast his response.

3.2.6 Local App for HCP

HCP has a local interface to interact with the Prometeus system. The local interface guarantees
the system can work even if the internet connection is not available. With the local app, the HCP
monitors the information coming from the sensors and receives suggestions from the NCA (in this
case, NCA shall run locally). The local app shows the alarms from the whole system to the HCP.

3.2.7 Webapp for HCP

The WebApp is the Prometeus' front-end UI for HCP users both with local and remote sessions. It
is used to review old monitoring sessions and to perform advanced data analysis.

3.2.8 WebApp for Parents

The webapp for parents is used by the parents to monitor the overall status of their baby while
he/she is in the NICU. The webapp for parents may be the same one used for HCP with different
levels of access/functional availability.

Project No 101099093 – Prometeus – WP5 – D5.3

6

4 Demo

A demo of the Prometeus project is always available at the following link:

https://prometeus.tolomeo.io

5 Protocols

The communication protocols between the PEU and the other components are designed to
guarantee the interoperability of all components. The main design principles are:

● interoperability: the connection between the device might be as decoupled as possible
● standard: the protocols should follow the standards and best practices in the market
● robustness: the protocols should be robust to every type of errors

Based on the Prometeus architecture there are the following communication protocols between
the components:

● Neo-opticap <-> PEU
● CMM <-> PEU
● NCA <-> PEU
● PEU <-> PCS

6 Neo-opticap <-> PEU Protocol

This section outlines the message exchange format and commands for communication between
the neo-opticap sensor and the PEU edge device using a REST protocol over an ethernet physical
connection. The protocol supports sending data, commands and errors from the neo-opticap
sensor to the PEU edge device and vice versa.

This protocol ensures robust and reliable communication between the sensor and the edge
device, enabling efficient data exchange and command execution. The standardised message
format is used for interoperability.

6.1 Communication Protocol

The physical communication between PEU and the neo-opticap sensor uses a standard ethernet
link. This protocol guarantees high throughputs and high reliability.

The application level communication uses REST and websocket server on the PEU. The sensor
device can use the endpoints provided by the PEU for the connection.

6.2 Base URL

The PEU server runs on a local network with a predefined IP address 192.168.1.10 and a base url:

 https://peu.prometeus.tolomeo.io/v1/

6.3 REST Endpoint

6.3.1 Post sensor data

● Description: Allow the sensor to send its data to the server.

● Endpoint: /sensors/{sensor_id}/data

● Method: POST
● Path Parameters:

https://prometeus.tolomeo.io/
https://peu.prometeus.tolomeo.io/v1/

Project No 101099093 – Prometeus – WP5 – D5.3

7

○ sensor_id (string): Unique identifier of the sensor. We will use “neopticap”.
● Request Body:

○ timestamp (string, ISO 8601): Time the data was collected.

○ value (array of arrays): 6x6 matrix of float values. The convention is a row for
regions in this order: FR, R, BR, FL, L, BL. In the row the values are StO2, O2Hb,
Hhb, Bfi, TotHb.

○ accuracy (array of arrays) optional: 6x6 matrix of int representing the accuracy of
the measure. The convention is a row for regions in this order: FR, R, BR, FL, L, BL.
In the row the values are StO2, O2Hb, Hhb, Bfi, TotHb. The value are

■ 0: bad accuracy
■ 1: medium accuracy
■ 2 good accuracy

● Example Request Body: (json)

{

 "timestamp": "2023-11-04T15:30:00Z",

 "matrix": [

 [1.1, 2.2, 3.3, 4.4, 5.5, 6.6],

 [7.1, 8.2, 9.3, 10.4, 11.5, 12.6],

 [13.1, 14.2, 15.3, 16.4, 17.5, 18.6],

 [19.1, 20.2, 21.3, 22.4, 23.5, 24.6],

 [25.1, 26.2, 27.3, 28.4, 29.5, 30.6],

 [31.1, 32.2, 33.3, 34.4, 35.5, 36.6]

]

}

● Response:

○ Status Code: 201 Created

Body:(json)

{

 "sensor_id": "string",

 "status": "success",

 "message": "Data received successfully."

}

● Errors:

○ 400 Bad Request: If the data is improperly formatted or missing.

○ 404 Not Found: If sensor_id does not exist.

Project No 101099093 – Prometeus – WP5 – D5.3

8

6.3.2 Get Sensor Configuration

● Description: Retrieve the current configuration of the sensor.

● Endpoint: /sensors/{sensor_id}/config

● Method: GET
● Path Parameters:

○ sensor_id (string): Unique identifier of the sensor.
● Response:

○ Status Code: 200 OK

○ Body: parameters of “config” json will be updated during the
development of the project

Body:(json)

{

 "sensor_id": "string",

 "config": {

 "sampling_rate": "5",

 }

}

● Errors:

○ 404 Not Found: If sensor_id does not exist.

6.3.3 Post File with bulk raw data

We have an additional endpoint to upload raw bulk data useful for the debug of the sensor.

This endpoint allows for efficient data uploads by enabling the sensor or an associated system to
upload a CSV file. This method is optimal for batch processing or synchronizing large amounts of
sensor data collected offline. The server will parse and process the CSV file upon upload, storing
the data as needed.

● Description: Allows the sensor to upload a CSV file containing raw data for debugging.

● Endpoint: /sensors/{sensor_id}/upload-raw-data

● Method: POST
● Path Parameters:

○ sensor_id (string): Unique identifier of the sensor.
● Headers:

○ Content-Type: multipart/form-data
● Request Body:

○ File: A CSV file uploaded with key file.
○ CSV File Format:

■ Columns:

■ timestamp: ISO 8601 formatted timestamp.

■ data .

Project No 101099093 – Prometeus – WP5 – D5.3

9

Example CSV File: (csv)

timestamp,data

2023-11-04T15:30:00Z,ABC43CB234

2023-11-04T15:35:00Z,2395E62F947

...

■
● Response:

○ Status Code: 201 Created

Body: (json)

{

 "sensor_id": "string",

 "status": "success",

 "message": "CSV file uploaded and processed successfully."

}

○
● Errors:

○ 400 Bad Request: If the file format is invalid or the file is missing required
fields.

○ 415 Unsupported Media Type: If the file is not a CSV.

○ 413 Payload Too Large: If the file size exceeds the server’s limit.

○ 404 Not Found: If sensor_id does not exist.

6.4 Web socket

To support real-time bidirectional communication between the server and the sensor, we have an
endpoint to establish a WebSocket connection. This WebSocket connection can enable the
sensor to send live data or receive commands and configuration changes from the server without
needing separate HTTP requests for each interaction.

This WebSocket endpoint facilitates real-time, continuous communication between the sensor
and the server, allowing for instantaneous data transmission and control without needing
individual HTTP requests. This is especially useful for high-frequency data transfer and immediate
command responsiveness.

● Description: Establish a WebSocket connection for real-time, bidirectional
communication between the PEU and the sensor.

● Endpoint: /sensors/{sensor_id}/ws

● Method: GET (used to initiate the WebSocket handshake)
● Path Parameters:

○ sensor_id (string): Unique identifier of the sensor.
● WebSocket Events:

○ data:
■ Direction: Sensor → Server
■ Description: Sensor sends real-time data in the form of individual data

Project No 101099093 – Prometeus – WP5 – D5.3

10

points or matrices.

Payload:(json)

{

 "event": "data",

 "timestamp": "ISO 8601 string",

 "value": "float" or "6x6 matrix of floats"

}

○ command:
■ Direction: Server → Sensor
■ Description: Server sends commands to the sensor for real-time control

(e.g., "start", "stop", "calibrate").

Payload: (json)

{

 "event": "command",

 "command": "string",

 "parameters": {

 "key": "value"

 }

}

■ Available commands are:
● Start Measurement

○ Description: Instructs the sensor to start taking
measurements.

○ Payload: None
● Stop Measurement

○ Description: Instructs the sensor to stop taking
measurements.

○ Payload: None
● Set Measurement Interval

○ Description: Sets the interval at which the sensor takes
measurements.

○ Payload: Interval time in seconds
● Request Sensor Status

○ Description: Requests the current status of the sensor.
○ Payload: None

○ config:
■ Direction: Server → Sensor
■ Description: Server sends configuration changes to the sensor (e.g.,

updating sampling rate or threshold).

Project No 101099093 – Prometeus – WP5 – D5.3

11

Payload:(json)

{

 "event": "config",

 "sampling_rate": "float",

 "threshold": "float",

 "mode": "string"

}

● Expected WebSocket Connection Flow:

○ Handshake: The WebSocket connection is established with a GET request to

/sensors/{sensor_id}/ws.
○ Data Transmission:

■ The sensor sends data events to the server at intervals or based on
conditions.

■ The server can send commands or configuration updates to the sensor as
needed.

● Response:

○ Status Code: 101 Switching Protocols (WebSocket connection is
successfully established).

● Errors:

○ 404 Not Found: If sensor_id does not exist.

○ 403 Forbidden: If the sensor does not have permission to establish a
WebSocket connection.

○ 500 Internal Server Error: If there is an error during connection setup.

6.5 Error Responses

Common errors across endpoints:

400 Bad Request: Malformed request syntax or invalid parameters.
json

{

 "error": "string",

 "message": "string"

}

404 Not Found: Resource not found.
json

{

 "error": "Resource Not Found",

 "message": "The specified sensor or resource does not exist."

}

Project No 101099093 – Prometeus – WP5 – D5.3

12

500 Internal Server Error: Server-side error.
json

{

 "error": "Internal Server Error",

 "message": "An error occurred on the server. Please try again later."

}

6.6 Security

● Authentication: Use API keys in the headers (Authorization: Bearer <API_KEY>).
● HTTPS Required: Ensure all requests are made over HTTPS.

7 CMM <-> PEU Protocol

This section outlines the message exchange format and commands for communication between
the CMM sensor and the PEU edge device using the Bluetooth low energy. The protocol supports
sending data, commands and errors from the CMM sensor to the edge device and vice versa.

This protocol ensures robust and reliable communication between the sensor and the edge
device, enabling efficient data exchange and command execution. The standardised message
format and checksum mechanism help maintain data integrity and streamline communication
processes.

7.1 Physical layer

The CMM sensor and the PEU are connected using Bluetooth low energy radio protocol.

The PEU device uses a AzureWave AW-CM276MA-SUR (datasheet) module compliant with
Bluetooth 2.1 and 3.0 + Enhanced Data Rate (EDR) + BT 5.3.

7.2 BLE communication structure

BLE communication is organised around the Generic Attribute Profile (GATT). The protocol uses
GATT services and characteristics to define how data is exchanged between devices.

https://www.azurewave.com/img/nxp/AW-CM276MA-SUR_DS_B4_C_STD.pdf

Project No 101099093 – Prometeus – WP5 – D5.3

13

The GATT structure is:

● Service: A collection of characteristics and relationships to other services that
encapsulate the behaviour of part of a device.

● Characteristic: A value used in a service, which includes properties, a value, and
optional descriptors.

7.2.1 Services and Characteristics

The service is configured with:

● UUID: 0000XXXX-0000-1000-8000-00805F9B34FB

7.2.1.1 Characteristics

1. Sensor Data Characteristic

○ UUID: 0000XXXX-0001-1000-8000-00805F9B34FB
○ Properties: Notify, Read
○ Description: Used by the sensor to send data to the edge device.

2. Command Characteristic

○ UUID: 0000XXXX-0002-1000-8000-00805F9B34FB
○ Properties: Write
○ Description: Used by the edge device to send commands to the sensor.

7.2.1.2 Message Format

Messages exchanged via BLE are encapsulated in the value field of characteristics.

7.2.1.3 Sensor Data Message

● Format: [Data Type] [Data Length] [Data Payload] [Checksum]
○ Data Type: 1 byte (indicates the type of sensor data, e.g., glucose)
○ Data Length: 1 byte (length of the data payload)
○ Data Payload: Variable length (actual sensor data)
○ Checksum: 1 byte (simple checksum for error-checking)

7.2.1.4 Command Message

● Format: [Command ID] [Command Payload Length] [Command Payload]
[Checksum]

○ Command ID: 1 byte (identifies the specific command)
○ Command Payload Length: 1 byte (length of the command payload)
○ Command Payload: Variable length (command-specific data)
○ Checksum: 1 byte (simple checksum for error-checking)

7.2.1.5 Supported Commands

1. Start Measurement
○ Command ID: 0xA1
○ Description: Instructs the sensor to start taking measurements.
○ Payload: None

2. Stop Measurement
○ Command ID: 0xA2
○ Description: Instructs the sensor to stop taking measurements.
○ Payload: None

Project No 101099093 – Prometeus – WP5 – D5.3

14

3. Set Measurement Interval
○ Command ID: 0xA3
○ Description: Sets the interval at which the sensor takes measurements.
○ Payload: Interval time in seconds (1 byte)

4. Request Sensor Status
○ Command ID: 0xA4
○ Description: Requests the current status of the sensor.
○ Payload: None

7.2.1.6 Checksum Calculation

The checksum is calculated by summing all bytes of the message (excluding the start and end
bytes for BLE, which is the characteristic value itself) and taking the least significant byte of the
result.

7.2.2 Example Messages

7.2.2.1 Sensor Data Message Example

● Description: A message from the sensor sending temperature data.

● Format: [Data Type] [Data Length] [Data Payload] [Checksum]

● Example: 0x01 0x03 0x1E 0x2A 0x35
○ Data Type: 0x01 (Temperature)
○ Data Length: 0x03 (3 bytes of data)
○ Data Payload: 0x1E 0x2A 0x35 (example temperature data)
○ Checksum: Calculated as (0x01 + 0x03 + 0x1E + 0x2A + 0x35) & 0xFF

7.2.2.2 Command Message Example

● Description: A message from the edge device to start measurements.

● Format: [Command ID] [Command Payload Length] [Command Payload]
[Checksum]

● Example: 0xA1 0x00 0xA1
○ Command ID: 0xA1 (Start Measurement)
○ Command Payload Length: 0x00 (no payload)
○ Checksum: Calculated as (0xA1 + 0x00) & 0xFF

7.3 Error Handling

● Invalid Checksum: If the checksum does not match, the message is discarded and an
error message is logged.

● Unsupported Commands: If an unsupported command is received, the sensor
responds with an error message indicating the invalid command.

8 NCA <-> PEU Protocol

The NCA (Nutritional Clinical Advisor) and the mathematical model of the baby metabolism are
under development by the partners of WP 3 and WP4.

Based on the complexity of the final algorithms and on the memory usage it can be executed on
the PEU or on the PCS. To be independent of the running setup the communication between the
PEU and the NCA will be based on REST API and websocket.

Project No 101099093 – Prometeus – WP5 – D5.3

15

8.1 Web Socket

● To support real-time bidirectional communication between the server and the NCA we
have an endpoint to establish a WebSocket connection. This WebSocket connection can
enable the PEU to send live sensor data to the NCA and to receive the advice for the
nutritional feed.Description: Establish a WebSocket connection for real-time,
bidirectional communication between the PEU and the NCA.

● Endpoint: /nca/{nca_id}/ws

● Method: GET (used to initiate the WebSocket handshake)
● Path Parameters:

○ nca_id (string): Unique identifier of the nca algorithm.
● WebSocket Events:

○ data:
■ Direction: PEU → NCA
■ Description: PEU sends real-time data received by the sensors.

Payload:(json)

{

 "event": "data",

 "timestamp": "ISO 8601 string",

 "sensor-type": "neopticap",

 "value": "float" or "6x6 matrix of floats"

}

○ command:
■ Direction: PEU → NCA
■ Description: PEU sends commands to the NCA for real-time control (e.g.,

"start", "stop", "calibrate").

Payload: (json)

{

 "event": "command",

 "command": "string",

 "parameters": {

 "key": "value"

 }

}

■ Available commands are:
● Start Prediction

○ Description: Instructs the sensor to start taking
measurements.

○ Payload: None
● Stop Prediction

○ Description: Instructs the sensor to stop taking

Project No 101099093 – Prometeus – WP5 – D5.3

16

measurements.
○ Payload: None

● Set Patient info
○ Description: Sets the information about the patient.
○ Payload: gender, weight, height, gestational age.

● Request NCA Status
○ Description: Requests the current status of the NCA.
○ Payload: None

○ config:
■ Direction: PEU → NCA
■ Description: PEU sends configuration changes to the NCA (e.g.,

thresholds, internal parameters, models).

Payload:(json)

{

 "event": "config",

 "sampling_rate": "float",

 "threshold": "float",

 "mode": "string"

}

○ advice:
■ Direction: NCA → PEU
■ Description: NCA sends advice to the PEU.

Payload: (json)

{

 "event": "advice",

 "description": "adjust infusion",

 "advice": {

 "key": "value"

 }

}

■ Advice: keys are the nutrition components to change in the infusion.
● Expected WebSocket Connection Flow:

○ Handshake: The WebSocket connection is established with a GET request to

/nca/{nca_id}/ws.
○ Data Transmission:

■ The PEU sends data events to the NCA at intervals or based on conditions.
■ The PEU can send commands or configuration updates to the NCA as

needed.
■ The NCA sends nutritional advice as needed.

● Response:

○ Status Code: 101 Switching Protocols (WebSocket connection is
successfully established).

● Errors:

Project No 101099093 – Prometeus – WP5 – D5.3

17

○ 404 Not Found: If nca_id does not exist.

○ 403 Forbidden: If the nca does not have permission to establish a WebSocket
connection.

○ 500 Internal Server Error: If there is an error during connection setup.

9 PEU <-> PCS Protocol

The PEU and PCS are connected and synchronised using the IoT platform named ToloMEO
developed by DAVE. The detailed documentation of the platform is available on the website
tolomeo.io .

The communication protocol is based on MQTT and on REST protocols.

The MQTT protocol is used to manage data from the sensors.

10 The REST protocol is used for the login of the users and to
manage the patient information.USB Protocol

The PEU supports data exchange via USB storage.

When a USB storage is inserted into the PEU the firmware searches for one of the following files
to start the corresponding activity.

File name Action Content Output

backup.txt create a backup of all
local data

signature folder with
name”backup_YYYY
MMDD_HHmm” with
inside the files:
config, data, logs

update

update the fw of the
PEU unit.
This action works only
if the USB is inserted
at boot time.

signed binary update
file

—

reset delete all data and
reset device to
factory configuration

signature —

console kill FE and open
console

http://tolomeo.io/

Project No 101099093 – Prometeus – WP5 – D5.3

18

11 Development Plan

The description of the communication protocol is well described in this document and part of the
development is already started on the PEU side.

The following Gantt shows in blue the tasks and deliverables of WP5 and in green its direct related
tasks and deliverables.

The sensors (WP1 and WP2) and the NCA (WP3 and WP4) are under development. An integration
test will be performed as soon as the sensors will be available.

